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Misinformation results in polarization of opinion!
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If a player increases misinformation dissemination below equilibrium,  the optimal response of the other player 
leads to greater misinformation sharing.
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• Source Accountability: Increasing credibility gain by holding sources accountable reduces 
misinformation and polarization.

• Community Resilience: Lowering susceptibility through education and media literacy fosters 
a less polarized, more informed society.

• Arms Race Dynamics: Reducing credibility can trigger a misinformation escalation, while 
credible biased sources encourage factual reporting.

Conclusion
• Misinformation is a dynamic problem.

• Is this outcome the fault of the media or the information ecosystem?

• The current information enviromen is explotaible
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Multiple misinformation sources

Content Sequence: Q = q1, q2, q3, …

Q = C1, C2, C1, M1, C2, M2, C4, …

    qi ∈ M ∪ P ∪ C
Misinformation

Pre-bunk

Misc. Content

Example:

When to Inoculate?

Overusing pre-bunking negatively 
affects user experience 

min
a

max
i

ci+1 = βci + 1{qi∈P}Goal 2: Minimize pre-bunk concentration in feed.

Goal 1: Ensure pre-bunks are delivered before misinformation. Eg: C1, P1, C2, C1, M1, C2, P2, M2, C4, …
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π∈Π
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min
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 determines the actions .π At

Deliver pre-bunks before misinformation

c(π, t) =
t

∑
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Both policies yield feasible but suboptimal solutions.
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such that   is constant across all . Specifically there exists a 
constant  such that ,

t0…t⌊∈T⌋ ∈ ℝ h
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α 1
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Optimal solution of the proxy problem evenly distributes pre-bunks. 
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• Fake News


• Propaganda


• Scams


• Rumors

Misinformation is vaguely 
defined.

Instead of labeling 
misinformation we use a 
probabilistic credibility 
measure

Democratic View

Suppose a randomly selected user labels 
post  as p Zp ∼ Bernoulli(c)

Define credibility as E[Zp] = c

Evidence-based View

Parse top  news articlesk

Determine credibility based on the consensus

We use a hybrid approach that utilizes both views.



Amini, Bayiz, and Topcu

Community Notes

19

 Y. E. Bayiz, U. Topcu, Re-ranking with Semi-automated Misinformation Detection for Increasing Credibility in Social Media Feeds, Submitted to SIGIR 20251



Amini, Bayiz, and Topcu

Community Notes

19

 Y. E. Bayiz, U. Topcu, Re-ranking with Semi-automated Misinformation Detection for Increasing Credibility in Social Media Feeds, Submitted to SIGIR 20251

• Each post  comes with community notes 


• Each community note  comes with a verdict 


• Eat community note also comes with ratings:


•  : Number of ‘helpful’ ratings


•  : Number of ‘not helpful’ ratings

p

i zp,i

h+
p,i

h−
p,i

̂chuman
p =

∑n
i=1 (zp,i ⋅ h+

p,i + (1 − zp,i) ⋅ h−
p,i)

∑n
i=1 (h+

p,i + h−
p,i)

,



Amini, Bayiz, and Topcu

Community Notes

19

 Y. E. Bayiz, U. Topcu, Re-ranking with Semi-automated Misinformation Detection for Increasing Credibility in Social Media Feeds, Submitted to SIGIR 20251

• Each post  comes with community notes 


• Each community note  comes with a verdict 


• Eat community note also comes with ratings:


•  : Number of ‘helpful’ ratings


•  : Number of ‘not helpful’ ratings

p

i zp,i

h+
p,i

h−
p,i

Push towards note 
verdict if helpful

Total number of ratings across all posts

Push away from note 
verdict if not helpful

̂chuman
p =

∑n
i=1 (zp,i ⋅ h+

p,i + (1 − zp,i) ⋅ h−
p,i)

∑n
i=1 (h+

p,i + h−
p,i)

,



Amini, Bayiz, and Topcu

Community Notes

19

 Y. E. Bayiz, U. Topcu, Re-ranking with Semi-automated Misinformation Detection for Increasing Credibility in Social Media Feeds, Submitted to SIGIR 20251

• Each post  comes with community notes 


• Each community note  comes with a verdict 


• Eat community note also comes with ratings:


•  : Number of ‘helpful’ ratings


•  : Number of ‘not helpful’ ratings

p

i zp,i

h+
p,i

h−
p,i

Push towards note 
verdict if helpful

Total number of ratings across all posts

Push away from note 
verdict if not helpful

Assuming ratings and notes come from 
uniformly sampled users 

 is an unbiased estimator of ̂chuman
p c = E[Zp]

̂chuman
p =

∑n
i=1 (zp,i ⋅ h+

p,i + (1 − zp,i) ⋅ h−
p,i)

∑n
i=1 (h+

p,i + h−
p,i)

,
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Generate artificial community notes using retrieval augmented generation (RAG)
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Generate artificial community notes using retrieval augmented generation (RAG)

Retrieval Base 
LLM

Retrieval Prompt Top k 
articles

NLP assisted 
search

Generation Prompt

Verdict zp,0
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Generate artificial community notes using retrieval augmented generation (RAG)

Retrieval Base 
LLM

Retrieval Prompt Top k 
articles

NLP assisted 
search

Generation Prompt

Verdict zp,0

̂cp =
zp,0 ⋅ k+ + (1 − zp,0) ⋅ k− + ∑n

i=1 (zp,i ⋅ h+
p,i + (1 − zp,i) ⋅ h−

p,i)
∑n

i=1 (h+
p,i + h−

p,i) + k+ + k−

Assign fictitious ratings to 
artificial verdict and treat it like a 
community note.

k+
p , k−

p
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Generate artificial community notes using retrieval augmented generation (RAG)

Retrieval Base 
LLM

Retrieval Prompt Top k 
articles

NLP assisted 
search

Generation Prompt

Verdict zp,0

̂cp =
zp,0 ⋅ k+ + (1 − zp,0) ⋅ k− + ∑n

i=1 (zp,i ⋅ h+
p,i + (1 − zp,i) ⋅ h−

p,i)
∑n

i=1 (h+
p,i + h−

p,i) + k+ + k−

Assign fictitious ratings to 
artificial verdict and treat it like a 
community note.

k+
p , k−

p
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Assumption: Content arrives already sorted in a content feed based 
on original value assignment V(σ)

C
on

te
nt

 F
ee

d 
(e

)

c = 0.1

c = 0.8

c = 0.3

c = 0.2

c = 0.8

c = 0.1

c = 0.3

c = 0.2 C
on

te
nt

 F
ee

d 
(σ

)
e = arg max

σ
V(σ)

Assume identity permutation optimizes platform objectives

Problem:  is not known


(  may not even exist )

V(σ)

V(σ)
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Assumption: Content arrives already sorted in a content feed based 
on original value assignment V(σ)

C
on

te
nt

 F
ee

d 
(e

)

c = 0.1

c = 0.8

c = 0.3

c = 0.2

c = 0.8

c = 0.1

c = 0.3

c = 0.2 C
on

te
nt

 F
ee

d 
(σ

)
e = arg max

σ
V(σ)

Assume identity permutation optimizes platform objectives

Problem:  is not known


(  may not even exist )

V(σ)

V(σ)

min
σ

D(σ) −
K

∑
p=1

qpcσ(p)

D(σ) =
K

∑
i=1

|σ(i) − i |

Solution: Solve a surrogate 
problem
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What is the cost of remaining oblivious to original cost?

Theoretically “Optimal” solutions:
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Dynamic

Network

Pro-active

Ranking 
Refinement

Mitigation via 
Graph 

Alteration

Safe and 
Optimal 

Information 
Control

Information 
Ecosystem

Optimal  
Pre-bunking 

Delivery

Influence 
Maximization

Knowledge 
Resilience

Disinformation 
Games

Credibility  
Detection

Community  
Susceptibility

Fake News 
Detection via  

LLM

Relative 
Credibility

• Challenges:


• Information ecosystem is not completely understood


• Information ecosystem is fragile against adversarial attacks


• Adversaries have initiatives


• Future Work:


• How to design a robust social network?


• Long term evolution of the network


• How to integrate multiple information modalities?


Conclusion 

Control and decision making enable new solutions for  
this challenge that goes well beyond fact-checking. 



